dev-flow
Release 1.0.0

Stainless Al, Inc.

Nov 06, 2020






1 Goals

2 Team Levels (work-in-progress)
2.1  TLO: No policy enforcement.
2.2 TLI1: Small team policies
2.3 TL2: Full team policies

3 Versioning

4 Meta Build Data

5 Git Repository Structure
6 Branch and Tag Names

7 Development Stories
7.1  Creating an New Project
7.2 Pushing Code
7.3  Creating a new Release
7.4  MAJOR and MINOR Releases
7.5 PATCH Releases
7.6 Working with Feature Branches
7.7  Hotfixing Releases
7.8 Build Process Implementation
7.9  No developer git commits to master
7.10 Git commit to develop (including merges)
7.11 Project Requirements
7.12 Tag Annotations

8 References

9 Indices and tables

CONTENTS:

AN N Lt







dev-flow, Release 1.0.0

This specification describes the continuous integration and delivery pipeline for Stainless Al’s projects. This proposal
builds on existing work done at Stainless in this regard. This pipeline is ideal for small teams. The pipeline relies on
the following tools/resources:

* Jenkins

¢ Semantic Versioning (semver.org)
* Git

* GitHub

Shared Library http://github.com/stainlessai/jenkins-semci

CONTENTS: 1


http://github.com/stainlessai/jenkins-semci

dev-flow, Release 1.0.0

2 CONTENTS:



CHAPTER
ONE

GOALS

The pipeline should achieve the following goals:
* Automate repetitive build tasks wherever possible.
* Enforce versioning standards using tools.
* Minimize the number of manual steps taken for any given operation:

¢ Where it makes sense (for non-code repositories like DEV configuration environments, e.g.), a deployment can
be automated

by a simple commit to a repository. * To release code, a single Jenkins job should be run * To promote code, a single
Jenkins job should be run, etc. * Support different “team levels,” i.e., optimize for a single developer, a small team,
and larger teams, by requiring differing levels of enforcement of lockdowns. * Write as little custom logic as possible
to support this scheme, relying mostly on existing software, plugins and tools.




dev-flow, Release 1.0.0

4 Chapter 1. Goals



CHAPTER
TWO

TEAM LEVELS (WORK-IN-PROGRESS)

We introduce the concept of “team levels,” or “TL” to indicate levels of enforcement to support different teams in this
structure. A TL is a code with an associated set of policy requirements intended to optimize the experience of that
team using this framework. For example, if only a single developer is working on a project, using pull requests and
locked branches may be more of a hindrance than an advantage (or maybe not, depends) so a project using “TL0O”
would not have any branch enforcement. Note that a single developer may elect to use TL3 policies, it’s up to them.

On larger teams, the level may change, so each level should be “backward-compatible,” i.e., all levels should share a
compatible structure. Branches may change between levels (for example a shared “develop” branch may be introduced
on moving to TL3 from TL2).

There are 3 team levels defined:

Team Levels

Team Level | Description

TLO A single-developer project

TL1 2-3 developers/collaborators working on a project
TL2 3 or more developers working on a project

The policy enforcement increases with team level.

2.1 TLO: No policy enforcement.

¢ No locked branches

All remote branches are read-write

* Pull requests are not required for any operation
* No required team code reviews

* No formal approval workflow

* Optional shared develop branch (or single develop - feature structure)




dev-flow, Release 1.0.0

2.2 TL1: Small team policies

* Master is read-only
* Developers can push directly to release branches

* Pull requests are not required for any operation

2.3 TL2: Full team policies

* Master and release branches are read-only

* Release branches are locked prior to release

* Any commits that must go into a release branch must be merged by pull request

* All commits must be merged into shared develop branch prior to moving to any release branch

* All PRs must be approved

Chapter 2. Team Levels (work-in-progress)



CHAPTER
THREE

VERSIONING

This pipeline uses semantic versioning. Read about it at https://semver.org.

This pipeline uses pre-release semantics based on a -SNAPSHOT build suffix. Note that the word “SNAPSHOT” is
arbitrary and this could be “alpha” or “candidate” or “rc” also.



https://semver.org

dev-flow, Release 1.0.0

8 Chapter 3. Versioning



CHAPTER
FOUR

META BUILD DATA

For tags on the develop or feature branches, we append a build number to the standard se-
mantic versioning scheme as build meta. So the full build identifier is: SMAJOR. SMINOR.
SPATCH (-$BRANCH) ~$SBUILD_NUMBER-SNAPSHOT where BUILD_NUMBER is an increasing number,
probably the Jenkins build number, although this is not strictly the required source of the number.

The BUILD_NUMBER is the only field that can be automatically bumped by Jenkins.

The $BRANCH field is only present on feature branches and the develop branch.




dev-flow, Release 1.0.0

10 Chapter 4. Meta Build Data



CHAPTER
FIVE

GIT REPOSITORY STRUCTURE

This pipeline is based on the Gitflow structure.
To summarize, projects are structured as follows:

The master branch contains the latest published release (HEAD points to the latest version of the latest deployed
release). Humans shouldn’t do anything on the master branch, only bots.

The develop branch contains the latest stable build that will become a future release. Artifacts published from develop
have a ~SNAPSHOT build meta tag.

The release branches contains all commits that are being staged for a particular release, and patch versions of the
release tree moving forward.

The hotfix branch contains emergency release commits that must be merged to master in-between regular releases.

Specific features are developed in specific feature branches. Any artifacts deployed di-
rectly from feature branches must contain the branch name meta, e.g., myproject-0.2.
5-myfeaturebranchname-$BUILD_NUMBER-SNAPSHOT.ext

Why develop and release branches?

There may be commits on develop that you want to deploy 2 patch releases out, or that haven’t been tested or committed
in error. The release branch is a staging area where commits that are certain to be deployed go prior to the release
artifact being produced.

11



dev-flow, Release 1.0.0

N
Every push to develop results in an
artifact being built

master develop @0.1.0 @1.0.0 myfeature

Default starting version is
001

Release is OPENED )

artifact-0.1.1-18-SNAPSHOT. e

These commits should™)
be excluded from this.

ol

DEVELOP LOGKED DURING THIS PRDGESS

/ [N
V.11

release

artifact-0.1.1-36-SNAPSI

Release "transaction”
showing all
operations. Tag is

verified by release job

artifact-0.2.0-126-SNAPSHOT

Bughxaner 10 I
release is opened

-
Merge updates from
B
.

N PR into develop
artifact0.2.0-215-SNAPSHOT ]} o based on team level)

DEVELOP LOCKED DURING THIS PROCESS

artifact-1.1.0-215-SNAPSHOT

. A

Time Build #

12 Chapter 5. Git Repository Structure



CHAPTER
SIX

BRANCH AND TAG NAMES

The following branch names are reserved:
¢ master
* develop
¢ v(version) < release branch
* hotfixes
Any other valid branch name can be used to describe a feature branch.
Tags must follow the format:
SPREFIX@SSEMVER

Where $PREFIX is a valid (acceptable by Jenkins, build process and source repository) prefix string followed by the
at sign “@” (omitted if no prefix is supplied), followed by the semantic version string.

For example, for a single-project repo, valid tags are of the form:
0.1.2

v0.1.2

and if multiple projects exist in a single repo, tags may exist of the form:
projectl1l@0.2.5-00-SNAPSHOT
projectl@0.2.5-myfeaturebranch-00-SNAPSHOT

project2@0.1.1

13



dev-flow, Release 1.0.0

14 Chapter 6. Branch and Tag Names



CHAPTER
SEVEN

DEVELOPMENT STORIES

The following stories outline developer interaction with the process and describe the tasks that should be performed
for each story. Actual implementation details are provided in a subsequent section.

7.1 Creating an New Project

A “project” as defined here is anything that maintains its own version history. It could live in its own repository or
in a subdirectory of another repository. When creating a new project, the starting semantic version of the project is
0.0.1. If no tags or other versioning data is present, this default should be enforced by the build system. The initial
branches are master, develop. An initial release can also be created at this time called v0.0.1.

7.2 Pushing Code

Any push to develop should result in a SNAPSHOT artifact being created and pushed to the artifact repository. The
artifact will have the version SMAJOR . $SLAST_MINOR+1. 0, the build number and the SNAPSHOT suffix, e.g., the
first snapshot from the repository willbe 0.1 .0-1-SNAPSHOT.

7.3 Creating a new Release

Releasing a version requires applying a tag to the repository commit that represents the revision you want to release.
In order for the release artifact to be built, the build system should enforce that the tagged commit is on the master
branch. If the tagged commit is not on master, the release version may be reserved but not released. It’s the developer’s
responsibility to appropriately version the release. IOW, if it’s a breaking change, don’t make it a patch release, etc.

7.4 MAJOR and MINOR Releases

The develop branch should automatically build a SNAPSHOT release having version SMAJOR.SLAST_MINOR+1.0-
SNAPSHOT. All release branches must end with .0, e.g., v1.0.0 or vl.1.0. Patch release versions should be
computed from the tags in the repository. To bump MAJOR or MINOR, apply the appropriate tag to the commit that
contains the desired release revision.

15



dev-flow, Release 1.0.0

7.5 PATCH Releases

To bump patch, apply the appropriate tag to the commit that contains the desired release version. There should be a
release branch labeled vMAJOR . MINOR. O that tracks only the commits relevant to that MAJOR/MINOR revision.

7.6 Working with Feature Branches

It’s a good practice to develop specific features on dedicated branches. Depending on team level, pull requests may be
required or a simple merge into develop may be sufficient. All features branches should flow featurebranch —
develop — release

7.7 Hotfixing Releases

Hotfixes are branched off of master, commits are added and then the commits are merged and released as per usual.

7.8 Build Process Implementation

Each project may implement a build toolchain of its choice. These notes describe a setup based on
* Jenkins as the centralized, coordinating build system
» Multibranch pipeline projects for automating artifact builds
* GitHub webhooks for notifications

* GitHub branches and tags for recording version history information. Jenkins will use the naming conventions
described

herein to calculate version labels.

» Each project should have an embedded Jenkinsfile (some repositories may have more than one) that contains
the build

pipeline for that project (or subproject). Jenkins must be able to run the project’s toolchain in the build environment.

7.9 No developer git commits to master

Ideally, the master branch should be locked down so that only a bot account can write to it. You’ll have to manually
kick off any merges for these operations from Jenkins, where stainlessbot will be allowed to make the changes. All
releases should come from the release branch only, developers will have to push commits there and then promote the
release commit in a build job.

Jenkins is used to automate artifact creation. Jenkins will scan for, or be notified of, events that occur during the
development cycle and take appropriate action. These events are detailed below.

16 Chapter 7. Development Stories



dev-flow, Release 1.0.0

7.10 Git commit to develop (including merges)

During regular development, developers will write code and commit to the develop branch, or a feature branch which
is merged into develop. For each commit pushed, Jenkins will run the build as defined in each project’s Jenkinsfile(s).
The build process for each project will determine if the build is up-to-date. If the build is up-to-date, the commit didn’t
contain anything material to the change of the software deliverable (e.g., maybe a doc update or .gitignore file update,
etc).

If the build changed, the build should produce a new artifact and automatically increment the BUILD_NUMBER of
the artifact based on the last valid tag in the repository, then deploy that artifact to the configured repository, and tag
the commit in GitHub with the new version.

7.11 Project Requirements

Projects must adhere to certain requirements in order to support this build process.

Project build scripts should accept version information from Jenkins. The close release job will set the following
environment:

VERSION_MAJOR, VERSION_MINOR, VERSION_PATCH, VERSION_PRERELEASE, BUILD_NUMBER

7.12 Tag Annotations

The annotation will serve as a record of all the changes that are going into a release. The text of the file should be
human readable and should be written in laypeople’s terms. An average user of the app should be able to understand
90% of the changelog (occasionally a bug fix or code change will require jargon). Previous examples of this file can
be found under the releases section of the GitHub repo.

Example Annotation

aws-cfn-configuration v1.7.0
— Add new "Foo" API
— Add new "Bar" section to left of Calendar
- Add new "Bar List" panel
— Add new "Bar" popup
— Redesign "Status" screen
— Minor changes and bugfixes:
— Change type of number property in Event API
- Correct typo in Logger GET API
— Fix bug that prevented Settings screen from loading
— Issues: HS-3 HS-23 HS-345 HS-555
HS-434 HS-445 HS-554 HS-123

7.10. Git commit to develop (including merges) 17




dev-flow, Release 1.0.0

18 Chapter 7. Development Stories



CHAPTER
EIGHT

REFERENCES

https://guides.github.com/introduction/flow/

https://www.semver.org/

https://nvie.com/posts/a-successful-git-branching-model
https://dev-cafe.github.io/branching-model/
https://jenkins.io/blog/2018/05/16/pipelines-with-git-tags/
https://stackoverflow.com/questions/49448029/multiple-jenkinsfile-in-one-repository

https://itnext.io/using- git-hooks-to-enforce-branch-naming-policy-ffd81fa0leSe

19


https://guides.github.com/introduction/flow/
https://www.semver.org/
https://nvie.com/posts/a-successful-git-branching-model
https://dev-cafe.github.io/branching-model/
https://jenkins.io/blog/2018/05/16/pipelines-with-git-tags/
https://stackoverflow.com/questions/49448029/multiple-jenkinsfile-in-one-repository
https://itnext.io/using-git-hooks-to-enforce-branch-naming-policy-ffd81fa01e5e

dev-flow, Release 1.0.0

20 Chapter 8. References



CHAPTER
NINE

INDICES AND TABLES

* genindex
¢ modindex

¢ search

21



	Goals
	Team Levels (work-in-progress)
	TL0: No policy enforcement.
	TL1: Small team policies
	TL2: Full team policies

	Versioning
	Meta Build Data
	Git Repository Structure
	Branch and Tag Names
	Development Stories
	Creating an New Project
	Pushing Code
	Creating a new Release
	MAJOR and MINOR Releases
	PATCH Releases
	Working with Feature Branches
	Hotfixing Releases
	Build Process Implementation
	No developer git commits to master
	Git commit to develop (including merges)
	Project Requirements
	Tag Annotations

	References
	Indices and tables

